Determinantes
Regra de Sarrus
O cálculo do determinante de 3ª ordem pode ser feito por meio de um dispositivo prático, denominado regra de Sarrus.
Acompanhe como aplicamos essa regra para
.

1º passo: Repetimos as duas primeiras colunas ao lado da terceira:

2º passo: Encontramos a soma do produto dos elementos da diagonal principal com os dois produtos obtidos pela multiplicação dos elementos das paralelas a essa diagonal (a soma deve ser precedida do sinal positivo):

3º passo: Encontramos a soma do produto dos elementos da diagonal secundária com os dois produtos obtidos pela multiplicação dos elementos das paralelas a essa diagonal ( a soma deve ser precedida do sinal negativo):

Assim:

Observação: Se desenvolvermos esse determinante de 3ª ordem aplicando o Teorema de Laplace, encontraremos o mesmo número real.
Determinante de ordem n > 3
Vimos que a regra de Sarrus é válida para o cálculo do determinante de uma matriz de ordem 3. Quando a matriz é de ordem superior a 3, devemos empregar o Teorema de Laplace para chegar a determinantes de ordem 3 e depois aplicar a regra de Sarrus.
Propriedades dos determinantes
Os demais associados a matrizes quadradas de ordem n apresentam as seguintes propriedades:
P1 ) Quando todos os elementos de uma fila ( linha ou coluna) são nulos, o determinante dessa matriz é nulo.
Exemplo:
![]() | ![]() |
P2) Se duas filas de uma matriz são iguais, então seu determinante é nulo.
Exemplo:

P3) Se duas filas paralelas de uma matriz são proporcionais, então seu determinante é nulo.
Exemplo:

P4) Se os elementos de uma fila de uma matriz são combinações lineares dos elementos correspondentes de filas paralelas, então seu determinante é nulo.
Exemplos:
![]() | ![]() |
P5 ) Teorema de Jacobi: o determinante de uma matriz não se altera quando somamos aos elementos de uma fila uma combinação linear dos elementos correspondentes de filas paralelas.
Exemplo:

Substituindo a 1ª coluna pela soma dessa mesma coluna com o dobro da 2ª, temos:

P6) O determinante de uma matriz e o de sua transposta são iguais.
Exemplo:
![]() | ![]() |
P7) Multiplicando por um número real todos os elementos de uma fila em uma matriz, o determinante dessa matriz fica multiplicado por esse número.
Exemplos:
![]() |
![]() |
P8) Quando trocamos as posições de duas filas paralelas, o determinante de uma matriz muda de sinal.
Exemplo:

P9) Quando, em uma matriz, os elementos acima ou abaixo da diagonal principal são todos nulos, o determinante é igual ao produto dos elementos dessa diagonal.
Exemplos:
![]() | ![]() |
P10) Quando, em uma matriz, os elementos acima ou abaixo da diagonal secundária são todos nulos, o determinante é igual ao produto dos elementos dessa diagonal multiplicado por
.

Exemplos:
![]() | ![]() |
P11) Para A e B matrizes quadradas de mesma ordem n,
. Como: 


Exemplo:

P12) 

Exemplo:

Nenhum comentário:
Postar um comentário